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Abstract. The effects of vertex corrections on the charge and spin responses of the Fermi liquid
are considered. It is shown that the interaction in the particle–hole channel induces virtual pair
excitations (Cooper pair like) in both the charge and the spin channels. It leads to the appearance
of an anomalous Fermi-liquid term Im̃χ ∼ −ω/T in both the charge and the spin responses
of the Fermi liquid in addition to the normal response∼ − ω/vF k. Such a contribution of the
anomalous term to the charge and spin responses is in agreement with the marginal Fermi-liquid
hypothesis proposed by Varmaet al to explain the universal anomalies in the normal state of
cuprate high-Tc superconductors.

1. Introduction

The normal state of the high-temperature layered two-dimensional (2D) Cu–O oxides
(cuprates) exhibits a number of unusual properties. Among them are the linearT -
dependence of resistivityρ(T ) [1–3], the inverse Hall coefficientR−1

H (T ) [4, 5], the
deviation of the optical conductivityσ(ω) [6] from the Drude theory, a flat electronic
background in the Raman scattering intensityS(ω) [7, 8] and an anomalousT -dependence
of the nuclear relaxation rateT −1

1 (T ) [9]. These features indicate that cuprates may radically
differ from conventional metals. In an attempt to find the unified feature in the observed
anomalies in the normal state of cuprates a hypothetical form of polarizability was proposed
by Varma and co-workers [10–13]. It was stated that over a wide range of momenta
q(ω < vF q) in the system there exist excitations as follows which contribute to both the
charge and the spin polarizabilities:

Im [χ̃(q, ω, T )] ∝
{

−N(0)ω/T ω � T

−N(0) T � ω < ωc

(1)

whereN(0) is the unrenormalized single-particle density of states, andωc is the cut-off
energy for a bosonic spectrum which is flat over a large frequency rangeT < ω < ωc. This
state with the spectrum of excitations in the form of equation (1) is termed the ‘marginal’
Fermi-liquid (MFL). In addition, it was pointed out [10, 11] thatχ̃ in equation (1) denotes
the leading frequency contribution of the renormalized particle–hole excitations with the
complete vertex, whereas the other term in the irreducible response is the leading frequency
contribution of the particle–hole excitations without any vertex correction. Namely, the latter
represents the conventional Fermi-liquid behaviour Im[χ̃(q, ω)] ∼ −N(0)ω/vF q. The form
of equation (1) implies that there exist in the Fermi system either non-degenerate current
carriers with spin or excitations of some kind with the bosonic nature in the particle–hole
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channel which make a contribution of the form of equation (1) to both the charge and the
spin responses.

It is well known that the fluctuation pairing can make a significant contribution to the
conductivity, magnetic susceptibility, specific heat, etc, of a superconducting metal in the
normal state [14–16]. Moreover, even in the normal metal where the repulsion dominates
in the interaction of electrons, a fluctuation pairing of electrons does occur. As a result, the
fluctuation-induced paramagnetic susceptibility logarithmically depends on temperature in
this case. This was first shown by Aslamazov and Larkin [14]. Effects due to the virtual
pairing are especially significant in layered metals. In a layered 2D cuprate the Coulomb
interaction is strong. In this case, virtual pairs (Cooper pair like) which appear in the
particle–hole channel due to such a strong interaction and behave as Bose-like excitations
can significantly modify the charge and spin responses of the Fermi liquid.

In this paper we shall show that the interaction in the particle–hole channel induces
correlations in the ‘Cooper’ channel. Such correlations bring about the large vertex
corrections in both the charge and the spin channels that lead the imaginary part of
polarizability to the form of equation (1) in addition to the normal Fermi-liquid polarizability
term∼−ω/vF k. In other words, we shall show that in the particle–hole channel there exist
virtual pair excitations (Cooper pair-like excitations) that make a contribution to both the
charge and the spin responses of the Fermi liquid.

2. General relations and response in the charge channel

The goal of the paper is to get analytical expressions for the irreducible density response
functionsχ̃c(k, ω) andχ̃s(k, ω) in the charge and spin channels, respectively, incorporating
the three-point vertex correction. The equation for the spin-dependent irreducible
polarizability including the vertex function can be represented in the form [17–20]

χ̃σσ ′(k) = −i
∫

d4p′

(2π)4
Gσ(p′)0σσ ′(p′, k)Gσ ′(p′ − k) (2)

wherep andk are the four-dimensional vectors,σ is the spin index,Gσ(k) is the dressed
electron Green function and0σσ ′(p′, k) is the exact scalar three-point vertex function. The
equation for the vertex function in the ladder approximation can be written as [17–20]

0σσ ′(p′, k) = δσσ ′ + i
∑
σ ′′

∫
d4p′

(2π)4
Kσσ ′′

(p, p′)Gσ ′′(p′)0σ ′′σ ′(p′, k)Gσ ′(p′ − k) (3)

whereKσσ ′
(p, p′) denotes the kernel of the integral equation for the vertex function. It

depends on the spin indices and describes the many-particle correlations. The diagrams
for the irreducible polarizability, equation (2), and the equation for the vertex function,
equation (3) are given in figure 1. The kernelKσσ ′

(p, p′) of the interaction in equation (3)
satisfies Ward’s identity [17–21] and can therefore be written as a functional derivative of the
self-energy with respect to the electron Green function:Kσσ ′

(p, p′) = −i δ6σ (p)/δGσ ′(p′),
where we introduce the spin-dependent self-energy. The single-particle self-energy
incorporating the vertex correction can thus be represented by [17–20]

6σ(p) = i
∑
σ ′

∫
d4k

(2π)4
Gσ ′(p − k)D(k)0σ ′σ (p, k) (4)

whereD(k) is the boson Green function. The boson Green function satisfies the Dyson
equationD(k) = D0(k) + D0(k)χ̃(k)D(k), whereD0(k) is the zeroth-order boson Green
function andχ̃(k) is the irreducible response function in the charge-density channel. As an
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example, in the case of the Coulomb interaction,D0(k) = V (k). From the Dyson equation
follows the equation for the dielectric response function:ε(k) = 1−V (k)χ̃(k). In the case
of the electron–phonon interaction,D0(k) = D0ph(k, ω) = 2g2

0(k)ω0(k)/(ω2 −ω2
0(k)+ iδ),

whereg0(k) andω0(k) are the unrenormalized (‘original’) matrix element of the electron–
phonon interaction and phonon frequency, respectively.

Figure 1. Diagrams for (a) the spin-dependent irreducible polarizabilityχ̃σσ ′ (k) and (b) the
vertex function0σσ ′ (p, k).

Now consider the kernel of interaction in the equation for the vertex part. To evaluate
this kernel we use the iteration procedure and take the self-energy equation in the random-
phase approximation (RPA) as a first approximation, i.e. equation (4) with0σσ ′(p, k) = δσσ ′

and χ̃(k) = χ0(k), where

χ0(k) = −i
∑

σ

∫
d4q

(2π)4
Gσ(q)Gσ (q − k)

is the free-particle response function. Using the relationδGσ (p)/δGσ ′(p′) = δ(p−p′)δσσ ′ ,
the expression for the kernel in the RPA can thus be derived as

Kσσ ′
(p, p′) = Kσσ ′

1 (p, p′) + Kσσ ′
2 (p, p′) (5a)

where

Kσσ ′
1 (p, p′) = D(p − p′)δσσ ′ (5b)

and

Kσσ ′
2 (p, p′) = −i

∫
d4q

(2π)4
D2(p − q)Gσ (q)[Gσ ′(p′ − p + q) + Gσ ′(p′ + p − q)] (5c)

with the boson propagatorD(k) in the RPA. If a bisection of any electron line is used
to representδGσ , the resulting diagram due to the cutting and stretching then represents
δ6σ/δGσ ′ . It is seen that the cutting at a, b and c of the top diagram of self-energy in
figure 2 yields the three diagrams in figures 2(a), 2(b) and 2(c), respectively. Figure 2(a)
corresponds to the first-order screened exchange interaction, whereas figures 2(b) and 2(c)
correspond to the interactions in the particle–hole channel. Figure 2(b) corresponds to the
second-order screened direct interaction. Figure 2(c) in the particle–hole channel is very
important because it represents the interaction in the ‘Cooper’ channel (this diagram in fact



10438 Y M Malozovsky and J D Fan

differs from the Cooper diagram since it has an opposite sign from the Cooper diagram and
its initial and final momenta in scattering are the same). In analogy to the Cooper diagram,
it has a logarithmic singularity [17]∼ ln(ωc/max{ω, T }) if p′ = −p and |p| ≈ pF , where
ωc is the characteristic cut-off frequency of the interactionD(k) and pF is the Fermi
momentum. Further, it is necessary to distinguish between the interactions in the charge-
density channel from those in the spin-density channel. For this purpose we can introduce
the spin-symmetric and spin-asymmetric expressions for the interactions taking into account
the propertyKσσ ′

(p, p′) = K−σ−σ ′
(p, p′) (which is valid in the paramagnetic phase

G↑(p) = G↓(p) = G(p)). Thus, the spin-symmetric and spin-asymmetric interactions
take the forms

Kc(p, p′) = K↑↑(p, p′) + K↑↓(p, p′) = K1(p, p′) + 2K2(p, p′) (6a)

and

Kc(p, p′) = K↑↑(p, p′) + K↑↓(p, p′) = K1(p, p′) = D(p − p′) (6b)

whereKc(p, p′) andKs(p, p′) are the kernels of interaction in the charge and spin channels,
respectively.

The same relations can be written for the vertex and irreducible response functions. For
instance, using equation (6) in equation (3) we have0c,s(p, k) = 0↑↑(p, k) ± 0↑↓(p, k).
The vertex functions in the charge and spin channels, respectively, are determined from the
solution of these equations:

0c,s(p, k) = 1 + i
∫

d4p′

(2π)4
Kc,s(p, p′)G(p′)G(p′ − k)0c,s(p

′ − k) (7)

whereKc,s(p, p′) are given by equation (6). Thus, using equation (6a) in equation (7),
one obtains the equation for0c(p, k), the vertex part in the charge channel. This is shown
diagramatically in figure 3(a). Moreover, using equation (6b) in equation (7), one has the
equation for0s(p, k), the vertex part in the spin channel (figure 3(b)). In terms of the
relations for0c,s(p, k) and equation (2), the irreducible response functions in the charge
and spin channels can be written as

χ̃c,s(k) = 2[χ̃↑↑(k) ± χ̃↑↓(k)] = −2i
∫

d4p′

(2π)4
G(p′)G(p′ − k)0c,s(p

′, k). (8)

Diagrams forχ̃c(k) and χ̃s(k) are shown in figure 3.
In addition, it can be shown [22] that the kernelKσσ ′

(p, p′) of the interaction in
equation (3) is related to the Landau Fermi-liquid interaction functionf σσ ′

(p, p′) in the
form Kσσ ′

(p, ξp; p′, ξp′) = −Z−1(0)f σσ ′
(p, p′), whereZ−1(0) = 1 − ∂6/∂ω |ω=0,p=pF

is
the renormalization parameter, andξp is the quasi-particle energy measured relative to the
Fermi energy. The result forf σσ ′

(p, p′) using equations (5a)–(5c) coincides with Rice’s
result [23] if we assume thatZ(0) = 1. The relation betweenKσσ ′

(p, p′) andf σσ ′
(p, p′)

will allow us to compare further the results in this paper with the phenomenology of the
Landau Fermi liquid.

Further, the interactions in equation (6) are frequency and momentum dependent in a
complicated way. For example, in the case of the Coulomb interaction,D0(k) = V (k),
the frequency dependence of interactions covers both the high-frequency region (the plasma
excitations) and the low-frequency region (the particle–hole excitations). In the case of
the electron–phonon interaction the phonon Green functionD(k, ω) has cut-offs for the
momentumkc ≈ kD and for the frequencyωc ≈ ωD. In this paper we assume that the
electron–boson interaction has the momentum and frequency extents of the order of the
Fermi energy, i.e.kc ≈ 2pF and ωc ≈ εF . This assumption allows us to concentrate our
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Figure 2. The graphical functional derivative of the RPA diagram for the self-energy with
respect to the electron Green function. The resulting diagram due to the cutting of any electron
line and stretching corresponds to the functional derivative of the self-energy,δ6σ (p)/δGσ ′ (p′),
i.e. the kernel of interaction. (a) The screened exchange interaction of the first order: (b) The
direct interaction of the second order: (c) The ‘Cooper’ diagram. The broken lines correspond
to the boson Green function in the RPA.

attention only on the particle–hole excitations in order to describe the vertex corrections in
an electron liquid, and to take a frequency-independent interaction in the RPA forω < vF k,
i.e. D(k, ω) ≈ D(k, 0) = D(k) in equation (6) as can be proved. Thus, our consideration
is, in fact, more suitable for the non-retarded interaction like the pure Coulomb interaction
when D0(k) = V (k). Indeed, in this case,D(k, ω) = V (k)/[1 − V (k)χ0(k, ω)] with
χ0(k, ω) ≈ χ0(k, 0) ≈ −NF for ω < vF k (e.g. in the isotropic 2D caseχ0(k, ω) ≈
χ0(k, 0) = −NF [1 − Re

√
1 − 4p2

F /k2], for ω < vF k, whereNF = m∗/π is the 2D density
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Figure 3. Diagram representation of equations for (a)0c(p, k) and χ̃c(k) and (b)0s(p, k) and
χ̃s (k). The broken lines represent the boson Green function in the RPA as in figure 2.

of states, whereas Im[χ0(k, ω)] ≈ −NF ω/vF k � −NF in this case). It is also understood
that, in the case of the frequency-independent interactionD(k), the well known Migdal
[18] theorem is violated and the vertex corrections should be included in all the orders of
perturbation theory.

Let us evaluate the response in the charge-density channel and, therefore, consider
equation (6a). Noting thatD(k) is frequency independent in the particle–hole channel, and
that the electron Green function is given byG−1(k, iω) = iω − ξk, whereξk = εk − µ is
the single-particle energyεk measured relative to the chemical potentialµ. Carrying out
the frequency summation [17, 21], equation (6a) turns into the form

Kc(p, iω; p′, iω′) = D(p − p′) + 2
∑

q

D2(p − q)
nF (ξq) − nF (ξq−p+p′)

ξq − ξq−p+p′ − i(ω − ω′)

−2
∑

q

D2(p − q)
1 − nF (ξq) − nF (ξp′+p−q)

i(ω + ω′) − ξq − ξp′+p−q
. (9)
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Actually, the second term in equation (9) in the particle–hole channel is almost frequency
independent. The last term in equation (9) is invariant under the transformationp′+p−q =
Q and Q → q. This also follows from figure 2(c), i.e. the ‘Cooper’ diagram. Thus,
changing the variables in the numerator, it can be written that

Kpair
c (p, iω; p′, iω′) = −2

∑
q

D2(p − q)
1 − 2nF (ξq)

i(ω + ω′) − ξq − ξp+p′−q
.

Therefore, it follows from equation (9) that the frequency dependence of the kernel
is mainly due to the last term. The real part of it has the logarithmic singularity
Re[Kpair

c (p, ω; −p, ω)] ∼ ln(εF /max{ω, T }) for p′ = −p and |p| ≈ pF , similar to the
Cooper problem, whereµ = εF (the Fermi energy) was assumed, while the imaginary part
Im[Kpair

c (p, ω; −p, ω) ∼ tanh(ω/2T ) in this case. Using equation (9), taking0c(p
′, k) = 1

for the integrand in equation (7), and carrying out the frequency summation, we can find
the vertex correction of the first order in the charge-density channel as follows:

0(1)
c (p, iω; k, iω′) = 1 + 10(1)

c (p, iω; k, iω′) (10)

where

10(1)
c (p, iω; k, iω′) = −

∑
p′

(
nF (ξp′)

ξp′ − ξp′−k − iω′ Kc(p, iω; p′, ξp′)

− nF (ξp′−k)

ξp′ − ξp′−k − iω′ Kc(p, iω; p′, ξp′−k + iω′)
)

(11)

and nF (ω) = [exp(ω/T ) + 1]−1 is the Fermi distribution function. In the region of the
particle–hole excitations(|ω′| � vF k), equation (11) can be written as

10(1)
c (p, iω; k, iω′) = −

∑
p′

χ0
p′k(ω′)Kc(p, iω; p′, ξp′−k + iω′) (12)

where

χ0
pk(ω) = [nF (ξp) − nF (ξp−k)]/(ξp − ξp−k − iω). (13)

It follows from equation (12) that the vertex correction is frequency dependent. Using
equation (10) in equation (8), the irreducible charge-density response function including the
first-order vertex correction can be represented by

χ̃ (1)
c (k, iω) = 2

∑
p

(
nF (ξp)

ξp − ξp−k − iω)
0(1)

c (p, ξp; k, iω)

− nF (ξp−k)

ξp − ξp−k − iω
0(1)

c (p, ξp−k + iω; k, iω)

)
≈ 2

∑
p

χ0
pk(ω)0(1)

c (p, ξp−k + iω; k, iω) (14)

whereχ0
pk(ω) is given by equation (13). Equation (14) is valid in the region of the particle–

hole excitations(|ω| � vF k).
Now, using equations (10) and (12) in equation (14), we have

χ̃ (1)
c (k, iω) = χ0(k, iω) − 2

∑
p,p′

χ0
pk(ω)χ0

p′k(ω)Kc(p, ξp−k + iω; p′, ξp′−k + iω). (15)

Furthermore, using equation (9) forKc(p, iω; p, iω′) in equation (15), one can see that
χ̃ (1)

c (k, iω) has two different contributions: the first is the usual contribution of the
single-particle (single-pair) excitations corrected by the vertex correction, and the second
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corresponds to the contribution of the virtual pair excitations (Cooper pair-like excitations,
corresponding to two excited quasi-particles and two excited quasi-holes coupled together)
in the particle–hole channel(ω � vF k). The contribution of the virtual pair excitations to
χ̃ (1)

c (k, iω) is given by the last term in equation (9) while the others in equation (9) make
a contribution to Re[0(1)

c (p, iω; k, iω′)] only. Thus, using equation (9) in equation (15),
χ̃

(1)
c pair (k, iω), which is the contribution of the virtual pair excitations toχ̃ (1)

c (k, iω), can be
written as

χ̃
(1)
c pair (k, iω) ≈ 4〈D2〉

∑
p,p′,q
|ξq |6εF

χ0
pk(ω)χ0

p′k(ω)
1 − 2nF (ξq)

2iω + ξp−k + ξp′−k − ξq − ξp′+p−q
(16)

whereχ0
pk(ω) is given by equation (13), and the angular average ofD(p − q) between

p and q was made. In addition, equation (16) diverges at largeq. This is due to the
approximation of the angular averaging forD2(q). Equation (15) does not have such
a divergence because of the fast decay ofD2(q) on increase inq > 2pF . Therefore,
the upper limit forq in equation (16) is approximately equal to 2pF . The diagram for
χ̃

(1)
c pair (k, iω) is shown in the last diagram of figure 3(a) forχ̃c(k). It can be shown that

the major contribution of the last diagram in figure 3(a) comes from the statep′ = −p.
Therefore, in the summation overp andp′ in equation (16), the major contribution comes
from the pairing states{p′, p} = (−p1, p1), (−p2, p2), . . . (−pn, pn). Thus, carrying out
the summation overp and p′ in equation (16), we can see that the coherent states (i.e.
the pairing states withp′ = −p and |p| ≈ pF ) contribute only to Im[̃χ(1)

c pair (k, iω)] in the
particle–hole channel(|ω| � vF k), whereas other states(p′ 6= −p) give a small contribution
of the order∼1/εF . In this caseξp−k + ξp′−k ≈ 0(� 2|ω|) becausep = −p′ and|p| ≈ pF .
Thus, after the analytical continuation to the real axes(iω → ω + iδ) the imaginary part of
χ̃

(1)
c pair (k, iω) is given by

Im[χ̃ (1)
c pair (k, ω)|ω�vF k] = −π

2
N2

F 〈D2〉
∑

q
|ξq |6εF

[1 − 2nF (ξq)]δ(ω − ξq)

= − π

4
N3

F 〈D2〉 tanh
( ω

2T

)
(17)

whereω 6 εF , andNF is the quasi-particle density of states (in an isotropic 2D electron
spectrum,NF = m∗/π , wherem∗ is the effective mass). The real part ofχ̃

(1)
c pair (k, iω) in

the static(ω ≈ 0) and long-wavelength limit(k ≈ 0) has the form

Re[χ̃ (1)
c pair (0, 0)] = − 1

2NF λ2 ln

(
2γEεF

πT

)
= −NF λ − 1

2NF λ2 ln

(
T ∗

T

)
(17a)

where λ2 = N2
F 〈D2〉 is the coupling constant, andT ∗ = 1.13εF exp(−2/λ) is the

characteristic temperature. One can see from equation (17a) that, in the case of weak
coupling (λ � 1), T ∗ is very low and the contribution of the virtual pairs to the real part
of the charge response is also small (e.g., atT = T ∗, Re[χ̃ (1)

c pair (0, 0)] ≈ −NF λ, where
Re[χ0(0, 0)] ≈ −NF ), but this contribution becomes significant in the case of intermediate
or strong coupling whenλ ≈ 1. Thus, equation (17a) exhibits the effect of the virtual
pairs on the charge-density response. It appears in the second order in terms ofλ with the
logarithmic temperature dependence and is similar to the result obtained by Aslamazov and
Larkin [14].

Finally, the imaginary part of̃χ(1)
c (k, iω), the irreducible response function in the charge

channel including the conventional Fermi-liquid response, using equations (9), (16) and (17),



Vertex correction effects on charge and spin of FL 10443

can be written as

Im[χ̃ (1)
c (k, ω)|ω�vF k] ≈ −NF

{
ω

vF k
Re[0(1)

c (pF , 0; 0, 0)] + π

4
N2

F 〈D2〉 tanh
( ω

2T

)}
(18)

It follows from equation (18) that in the weak-coupling limit(〈D〉NF � 1) the second
term in the brackets is small in comparison with the first and Im[χ̃ (1)

c (k, ω)|ω�vF k] ∼
−NF ω/vF k becomes the form of the standard Fermi-liquid result. However, in the case
of intermediate and strong coupling(〈D〉NF 6 1), it follows from equation (18) that
Im[χ̃ (1)

c (k, ω)|ω�vF k] ≈ −NF λ2 tanh(ω/2T ), whereλ = 〈D〉NF is the effective interelectron
coupling constant in the charge channel as before. Thus, in the case whenλ 6 1,
equation (18) is similar to equation (1) and hence follows the hypothesis of Varmaet
al [10].

Such an unusual behaviour of the irreducible response can be explained as follows. In
the weak-coupling limit(λ � 1), only the single-particle excitations make a contribution
to the response of the Fermi liquid because the contribution of the virtual pair excitations
(two quasi-particles and two quasi-holes excited from the Fermi sea and coupled together)
is weak. In the case whenλ 6 1, when correlations in the ‘Cooper’ channel become
stronger, the virtual pair excitations—Cooper pair-like excitations—are more important
and make a major contribution to the charge response of the Fermi liquid while the
single-particle excitations in this case are less important. Moreover, Cooper pair-like
excitations, similar to a non-degenerate gas, make a contribution∼ − ω/T to the charge
response.

The form of the charge response in the strong-coupling limit (i.e. Im[χ̃ (1)
c (k, ω)|ω�vF k] ∼

−NF tanh(ω/2T ), whereλ ≈ 1 was assumed) is somehow similar to that of the nested Fermi
liquid (NFL) proposed by Virosztek and Ruvalds [24] in an attempt to develop a microscopic
basis for equation (1), the MFL model. The susceptibility for the nested fermions [24] in the
form of Im[χ̃NFL

0 (k ≈ Q, ω)] ∼ −NF tanh(ω/4T ) exists only for a particular momentum
transferQ, the nesting wavevector, without including any vertex corrections, and the Fermi
surface should have the ideal nesting features as well. Moreover, in the framework of the
NFL the normal response is missing. Our approach, incorporating the vertex corrections,
leads to the response which includes the normal response as well as the anomalous MFL
response.

Further, using equations (10) and (11), we can find the equation for the vertex correction
up to the second order (from equation (7)) as follows:

0(2)
c (p, iω; k, iω′) = 1 + 10(1)

c (p, iω; k, iω′)

−
∑
p′

(
nF (ξp′)

ξp′ − ξp′−k − iω′ Kc(p, iω; p′, ξp′) 10(1)
c (p′, ξp′ ; k, iω′)

− nF (ξp′−k)

ξp′ − ξp′−k − iω′ Kc(p, iω; p′, ξp′−k + iω′) 10(1)
c (p′, ξp′−k + iω′; k, iω′)

)
≈ 1 + 10(1)

c (p, iω; k, iω′)

−
∑
p′

χ̃0
p′k(ω′)Kc(p, iω; p′, ξp′−k + iω′) 10(1)

c (p′, ξp′−k + iω′; k, iω′) (19)

Noting that in the summation overp′ in equation (19) the major contribution comes from
|p′| ≈ pF , we can therefore replace10(1)

c (p′, ξp′−k + iω′; k, iω′) in equation (19) by its
average over the Fermi surface, i.e.10(1)

c (p′, ξp′−k+iω′; k, iω′) turns into〈10(1)
c (p′, ξp′−k+

iω′; k, iω′)〉|p′|=pF
. Then equation (19) can approximately be written as

0(2)
c (p, iω; k, iω′) ≈ 1 + 10(1)

c (p, iω; k, iω′)〈0(1)
c (p′, ξp′−k + iω′; k, iω′)〉|p′|=pF

. (20)
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Similarly, we can obtain the vertex correction up to the third order0(3)
c (p, k), and so on

up to thenth order0(n)
c (p, k), and express them in terms of10(1)

c (p, k). It is obvious that
the expression of0(n)

c (p, k), is a series of10(1)
c (p, k) and0c(p, k) = limn→∞[0(n)

c (p, k)].
Making the necessary summation of the series (‘ladder’), the vertex correction can be
evaluated as

0c(p, iω; k, iω′) ≈ 1 + 10(1)
c (p, iω; k, iω′)

1 − 〈10
(1)
c (p, ξp−k + iω′; k, iω′)〉|p|=pF

. (21)

In the denominator of equation (21),〈10(1)
c (p, ξp−k+ iω′; k, iω′)〉|p|=pF

, using equations (9)
and (12), can be represented by

〈10(1)
c (p, ξp−k + iω; k, iω)〉|p|=pF

= − χ0(k, iω)

2

{
〈D〉 − 〈D2〉NF − 〈D2〉

∑
q,|ξq |6εF

1 − 2nF (ξq)

iω − ξq

}
. (22)

Now, using equation (21) in equation (14), i.e.0(1)
c (p, iω; k, iω′) in equation (14) is replaced

by 0(1)
c (p, iω′; k, iω′), and noting that

2
∑

p

χ0
pk(ω) 10c(p, ξp−k + iω; k, iω) ≈ χ0(k, iω)〈10(1)

c (p, ξp−k + iω; k, iω)〉|p|=pF

the irreducible charge-density response function can be expressed by

χ̃c(k, iω) = χ0(k, iω)

1 − 〈10
(1)
c (p, ξp−k + iω; k, iω)〉|p|=pF

. (23)

Finally, using equation (22) to replace〈10(1)
c (p, ξp−k + iω; k, iω)〉|p|=pF

in equation (23),
after analytical continuation(iω → ω + iδ) it follows that

χ̃c(k, ω) = χ0(k, ω0)

1 + [Ac − Bc(ω)]χ0(k, ω)
(24a)

where

Bc(ω) = 1
2〈D2(p − q)〉

∑
q,|ξq |6εF

1 − 2nF (ξq)

ω − ξq + iδ

Ac = 1
2[〈D(p − p′)〉 − 〈D2(p − q)〉NF ]. (24b)

In equation (24) the contribution of the screened exchange interaction in the first order
and screened direct interaction in the second order to the vertex correction is given by the
term Ac, whereasBc(ω) represents the contribution from the correlations in the ‘Cooper’
channel. In the high-density limit or for weak interelectron coupling(〈D〉NF � 1) the effect
of the correction due to the exchange interaction is larger than that from the correlations
in the ‘Cooper’ channel(Ac � |Bc(0)|). The effect of the vertex correction oñχc(k, ω)

in this case is small(0c ≈ 1) and χ̃c(k, ω) ≈ χ0(k, ω). In the low-density limit or for
strong interelectron coupling(〈D〉NF ≈ 1) the effect of the exchange corrections is almost
zero,Ac ≈ 0, because the second-order direct term almost compensates for the first-order
exchange term. Only correlations in the ‘Cooper’ channel exist. Hence,Ac � |Bc(0)|. In
this case the vertex correction in the particle–hole channel is large,0c(pF , ω ≈ 0) � 1 for
low frequencies, while the frequency dependence disappears,0c(pF , ω) ≈ 1, for ω > εF .
Thus, in the case of intermediate or strong coupling, the correlations in the ‘Cooper’ channel
are important.
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The effect of the vertex correction oñχc(k, ω) is also significant. The irreducible
response in the charge-density channel, using equation (24), can be rewritten as

χ̃c(k, ω)|ω<vF k = Re[χ̃c(k, ω)|ω<vF k] + i Im[ χ̃c(k, ω)|ω<vF k] (25)

where

Re[χ̃c(k, ω)|ω<vF k] ≈ − NF

1 + F s
0 (ω)

(26)

and

Im[χ̃c(k, ω)|ω<vFk] ≈ − NF

(1 + F s
0 (ω))2

{
ω

vF k
+ π

4
N2

F 〈D2〉 tanh

(
ω

2T

)}
(27)

with F s
0 (ω) = −NF [Ac − ReBc(ω)] and Re[Bc(ω)] ≈ − 1

2NF 〈D2〉 ln(εF /max{ω, T }). In
addition, the relation betweenKσσ ′

(p, p′), the kernel of the interaction, and the Landau
Fermi-liquid interaction functionf σσ ′

(p, p′) givesZ−1(0)〈f ↑↑
p,p′ +f

↑↓
p,p′ 〉 = −2[Ac −Bc(0)],

where 〈. . .〉 denotes the angular average over the Fermi surface as before. As seen, in
the static limit, equation (26) turns into the result of Landau’s Fermi-liquid theory [25, 26]
with F s

0 (0) being the Landau Fermi-liquid parameter in the charge channel at the zeroth
frequency. Thus,F s

0 (ω) is the frequency-dependent Landau Fermi-liquid parameter in the
charge channel. In addition, as seen, equation (27) incorporates both the behaviour proposed
by Varmaet al, i.e. Imχ ∼ −ω/T , and the standard Fermi-liquid result, Imχ ∼ −ω/vF k.

3. Response in the spin channel

Now, let us evaluate the response in the spin channel. Note thatD(k) depends on momentum
only in the particle–hole channel as before. ThereforeKs(p, p′) = D(p − p′, 0) in
equation (6b). We can carry out the average over the angle betweenp andp′ in equation (6b)
to get the solutions to equations (7) and (8) for the vertex and response functions,
respectively, in the spin-density channel. In the approximation of the angular average,
Ks(p, p′) = D(p − p′, 0) ≈ 〈D(p − p′)〉, the vertex function in the spin channel depends
on the momentum transfer only, namely0s(p, k) = 0s(k) = 1/[1 + 〈Ks(p − p′)〉χ0(k)/2]
in equation (7). Thus, taking into account this0s(k) in equation (8), the irreducible
polarizability in the spin-density channel is derived as

χ̃s(k, ω) = χ0(k, ω)/[1 + 1
2〈D(p − p′)〉χ0(k, ω)]. (28)

In the static and long-wavelength limit, equation (28) turns into the form of the well
known result of the Landau Fermi-liquid theory [25, 26],χ̃s(0, 0) = −NF /(1+ Fa

0 ), where
Fa

0 = −〈D(p − p′)〉NF /2 is the Landau Fermi-liquid parameter in the spin channel.
Now, as an example, let us evaluateFa

0 in a layered 2D Fermi gas with the isotropic
electron spectrum in any of layers, i.e.εp = p2/2m∗—the 2D single-particle energy. The
equationD(k) = V (k)/[1 − V (k)χ0(k, 0)] was then used. It corresponds to the RPA for
D(k). Note that the bare Coulomb interactionV (k), here in a layered system [27] is given
by

V (k) = V0(k‖)
sinh(ck‖)

cosh(ck‖) − cos(ckz)
= V0(k‖)f (k) (29)

wherek‖ andkz are the momentum components in a plane and in the direction normal to
it, respectively,V0(k‖) = 2πe2/κk‖ is the bare Coulomb interaction in a pure 2D case with
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the dielectric constantκ of the lattice background, andf (k) is the form factor of a layered
2D system. Thus, we have

Fa
0 = − cm∗

(2π)3

∫ π/c

−π/c

dp′
z

∫ 2π

0
dϕ D(p − p′)‖p|≈|p′|≈pF

= −α

π
F(α, ζ ) (30)

where

F(α, ζ ) =
∫ 1

0
dx{(1 − x2)[x2 + 2αx coth(ζx) + α2]}−1/2 (31)

in which k2
‖ = |p‖ − p′

‖|2 = 2p2
F (1 − cosϕ) was used,α = e2/κvF is the interelectron

interaction constant withvF = pF /m∗ (m∗ is the electron effective or band mass) and
the dielectric constantκ, and ζ = 2pF c with the 2D Fermi momentumpF = √

2πns

and the interlayer spacingc. Also, α is related to the dimensionless density parameterrs

by the relationrs = √
2α. It follows from equation (31) thatFa

0 = −µc, whereµc is
the interelectron Coulomb repulsion parameter [28] in the RPA and its maximum value
is Fa

0 = −µc = − 1
2 for α � 1, and thatFa

0 = −(α/π) ln(2/α) in the case of the
high-density limit (α � 1) and for a large interlayer spacing(pF c � 1). In addition,
〈D〉 = 2e2F(α, ζ )/κpF is obtained in equation (31) and can be used, for example, in
equation (24b) and elsewhere. Moreover,Fa

0 in equation (31) decreases with decrease in
interlayer spacingc, whenc < a∗

B , namelyFa
0 ≈ −1/2

√
1 + a∗

B/c, wherea∗
B = κ/e2m∗ is

the effective Bohr radius.
Thus, from equations (28) and (30), the response in the spin channel, at least in the

RPA, complies with the result of the conventional Fermi-liquid theory:

Im[χ̃s(k, ω)|ω<vF k] ≈ − NF

(1 + Fa
0 )2

ω

vF k
. (32)

Equation (32) leads to the well known Korringa law [29], i.e.

T −1
1 ∼ − lim

ω→0

(
T

ω

∑
k

Im[χ̃s(k, ω)]

)
∼ T .

Thus, equation (32) disagrees with equation (1) in the spin channel and does not comply
with the MFL model. This means that equation (32) does not include the effect of the
virtual pair excitations and, hence, cannot describe the deviation from the Korringa law
in cuprates. It is apparently necessary to consider the effect of the virtual pair excitations
on the vertex correction in the spin channel. Therefore, in this case we have to evaluate
Ks(p, p′), the kernel of interaction in the spin channel, in the higher orders beyond the
RPA.

Let us assume that we have already evaluated0c(p, k), the vertex correction in the
charge-density channel (the approximate analytical expression for0c(p, k) is given by
equation (21)). Then, equation (4) for the single-particle self-energy containing the vertex
correction in the charge channel is described by

6σ(p) = i
∫

d4k

(2π)4
Gσ(p − k)Dc(k)0c(p, k)

whereDc(k) is the boson propagator beyond the RPA. Now, we can evaluateKσσ ′
(p, p′),

using the relationKσσ ′
(p, p′) = −i δ6σ (p)/δGσ ′(p′) as before. The expression for the

kernel of interaction in the spin channel including the vertex correction0c(p, k) from the
charge channel can be derived asKs(p, p′) = Dc(p−p′)0c(p, p−p′). It apparently differs
from equation (6b), whereKs(p, p′) = DRPA(p −p′). The expression forKs(p, p′) in the
form of Ks(p, p′) = Dc(p−p′)0c(p, p−p′), in fact, represents the leading contribution to
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the interaction in the spin channel. It accounts for neither the higher-order contributions such
asU2χ̃s(p−p′), the contribution to the interaction in the spin channel from the paramagnon
exchange [30] (whereU = 〈D(p − p′)〉/2 is the short-range exchange interaction), nor
δ0c(p, k)/δGσ (p′), the contribution coming from the functional derivative of the vertex
function with respect to the Green function. Using previously obtained results for the
vertex function (equation (21)) and the irreducible response function in the charge channel
(equation (23)), the equation for the irreducible response function in the spin channel can
be derived, in analogy to equation (23), as follows:

χ̃s(k, iω) = χ0(k, iω)

1 − 〈10
(1)
s (p, ξp−k + iω; k, iω)〉|p|=pF

(33)

where10(1)
s (p, iω; k, iω′) is the vertex correction of the first order in the spin channel,

and χ0(k, ω) is the free-particle response function as before. Using equation (12)
with Ks(p, p′) = Dc(p − p′)0c(p, p − p′) (in equation (12)Kc(p, p′) is replaced by
Ks(p, p′)), the vertex correction10(1)

s (p, iω; k, iω′) of the first order, in the spin channel
in equation (33) can be written as

10(1)
s (p, ξp−k + iω; k, iω) = −

∑
p′

χ0
p′k(ω)Ks(p, ξp−k + iω; p′, ξp′−k + iω)

= −
∑
p′

χ0
p′k(ω)Dc(p − p′, ξp−k − ξp′−k)

×0c(p, ξp−k + iω; p − p′, ξp−k − ξp′−k) (34)

whereχ0
p′k(ω) is given by equation (13),0c(p, iω; k, iω) is the vertex function in the charge

channel and is given by equation (21). In equation (34),Dc(k, ω) is the boson propagator
beyond the RPA. It satisfies the Dyson equation (seeD(k) in equation (4)) and, therefore,
incorporates the irreducible charge-density response functionχ̃c(k, ω). In the case of the
Coulomb interactionDc(k, ω) = V (k)/[1−V (k)χ̃c(k, ω)], whereV (k) is a bare Coulomb
interaction (in the case of a layered 2D system,V (k) is given by equation (29)), and
χ̃c(k, ω) is the irreducible charge-density response function given by equation (23) or (24).
Using equation (21) in equation (34),10(1)

s (p, ξp−k + iω; k, iω) can be represented by

10(1)
s (p, ξp−k + iω; k, iω) = 1s1 + 1s2 (35)

where

1s1 = −
∑
p′

χ0
p′k(ω)Dc(p − p′, ξp−k − ξp′−k) ≈ − 1

2〈Dc(p − p′, 0)〉χ0(k, iω) (36)

and

1s2 = −
∑
p′

χ0
p′k(ω)

Dc(p − p′, ξp−k − ξp′−k)10(1)
c (p, ξp−k + iω; p − p′, ξp−k − ξp′−k)

1 − 〈10
(1)
c (p′′, ξp′′−p+p′ + ξp−k − ξp′−k; p − p′, ξp−k − ξp′−k)〉|p′′|=pF

≈ −
〈

Dc(p − p′, 0)

1 − 〈10
(1)
c (p′′, ξp′′−p+p′ ; p − p′, 0)〉|p′′|=pF

〉
×

∑
p′

χ0
p′k(ω) 10(1)

c (p, ξp−k + iω; p − p′, ξp−k − ξp′−k). (37)

In equations (36) and (37) the angular average was made as before, andDc(k, ω) ≈ Dc(k, 0)

becauseω = ξp−k − ξp′−k → 0 for k → 0 and |p| ≈ |p′| ≈ pF . Using equation (12) in
equation (37),1s2 can be written as follows:

1s2 ≈ 〈D̃c(p − p′, 0)〉
∑
p′,p′′

χ0
p′k(ω)χ0

p′′,p−p′(ξp−k − ξp′−k)

×Kc(p, ξp−k + iω; p′′, ξp′′−p+p′ + ξp−k − ξp′−k) (38)
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where

χ0
p′′,p−p′(ξp−k − ξp′−k) = nF (ξp′′) − nF (ξp′′−p+p′)

ξp′′ − ξp′′−p+p′ − (ξp−k − ξp′−k)

and

D̃c(k, ω) = Dc(k, ω)

1 − 〈10
(1)
c (p, ξp−k + ω; k, ω)〉|p|=pF

. (39)

Using equation (9) in equation (38), the contribution of the virtual pair excitations to
equation (38) is given by the last term in equation (9) and can be represented by

1
pair

s2 ≈ −2〈D̃c〉〈D2〉
∑

p′,p′′,q

χ0
p′k(ω)χ0

p′′,p−p′(ξp−k − ξp′−k)

× 1 − nF (ξq) − nF (ξp′′+p−q)

iω + ξp−k + ξp′′−p+p′ + ξp−k − ξp′−k − ξq − ξp′′+p−q
(40)

where 〈D̃c〉 = 〈D̃c(p − p′, 0)〉. We can perform the average over the Fermi surface in
equation (40) with respect top in analogy to equation (19) and the summation (integration)
over p′ andp′′ in equation (40) noting thatξp−k − ξp′−k ≈ 0 sincep − p′ ≈ k → 0, and
that ξp−k + ξp′′−p+p′ ≈ ξp−k + ξp′′−k ≈ 0(� ω) becausep = −p′′ and |p| ≈ pF .

Then, after the average over the Fermi surface, equation (40) can be converted to

〈1pair

s2 〉 ≈ 1
2〈D̃c〉〈D2〉NF χ0(k, iω)

∑
q,|ξq |6εF

1 − 2nF (ξq)

iω − 2ξq
. (41)

Finally, using equations (9) and (36)–(41), we have

〈10(1)
s (p, ξp−k + ω; k, ω)〉|p|=pF

≈ −[As − Bs(ω)]χ0(k, ω) (42)

where

As = 1
2[〈Dc(p − p′, 0)〉 + 〈D̃c(p − p′, 0)〉NF Ac] (43)

and

Bs(ω) = 1
2〈D̃c(p − p′, 0)〉〈D2(p − q)〉NF

∑
q,|ξq |6εF

1 − 2nF (ξq)

ω − 2ξq + iδ
(44)

andAc is given in equation (24b). Now, using equation (42) with equations (43) and (44)
in equation (33), the irreducible spin-density response function can finally be expressed by

χ̃s(k, ω) = χ0(k, ω)

1 + [As − Bs(ω)]χ0(k, ω)
(45)

where the parametersAs andBs(ω) are given by equations (43) and (44), respectively.
Further, equation (45) can also be represented in a form similar to equation (25). Thus,

we have

χ̃s(k, ω)|ω<vF k = Re[χ̃s(k, ω)|ω<vF k] + i Im[ χ̃s(k, ω)|ω<vF k] (46)

where

Re[χ̃s(k, ω)|ω<vF k] ≈ − NF

1 + Fa
0 (ω)

(47)

and

Im[χ̃s(k, ω)|ω<vF k] ≈ − NF

(1 + Fa
0 (ω))2

{
ω

vF k
+ π

8
N3

F 〈D̃c〉〈D2〉 tanh
( ω

4T

)}
(48)
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with Fa
0 (ω) = −NF {As − Re[Bs(ω)]} being the Landau Fermi-liquid parameter in the spin

channel, and Re[Bs(ω)] ≈ − 1
4N2

F 〈D̃c〉〈D2〉 ln(εF /max{ω/2, T }).
In addition, one can show that the expressionAs −Bs(0) is related to the Landau Fermi-

liquid interaction functionf σσ ′
(p, p′) as 2[As −Bs(0)] = −Z−1(0)〈f ↑↑

p,p′ −f
↑↓
p,p′ 〉. It can be

seen that, in the static limit, equation (47) gives rise to the result of the Landau Fermi-liquid
theory [25, 26] withFa

0 (0) being the Landau Fermi-liquid parameter in the spin channel at
the zeroth frequency. Thus, in the case of intermediate and strong coupling,Fa

0 (ω) becomes
the frequency-dependent Landau Fermi-liquid parameter in the spin channel, in contrast
with equation (30) where in the RPA this parameter is frequency independent. In addition,
equation (48) contains both the behaviour suggested by Varmaet al i.e. Imχ ∼ −ω/T , and
the standard Fermi-liquid result Imχ ∼ −ω/vF k. It is concluded from equation (48) that
the contribution of the term∼ −ω/T to the response function in the spin channel is much
smaller than that in the charge channel because Imχ̃s ∼ −(π/8)NF λ3 tanh(ω/4T ), where
λ ∼ NF 〈D〉, whereas in the charge-density channel it is Imχ̃c ∼ −(π/4)NF λ2 tanh(ω/2T ).

Now, it is possible to estimate the inverse nuclear-spin relaxation time using
equation (48). It can be shown that

T −1
1 ∼ − lim

ω→0

(
T

ω

∑
k

Im[χ̃s(k, ω)]

)
≈ χ̃2

s (0, 0)

(
T + π

16
λ3

s εF

)
(49)

where the interelectron coupling constant in the spin channelλs = N3
F

√
〈D̃c〉〈D2〉 is

introduced, the spin susceptibilitỹχs(0, 0) of the Fermi liquid is given by equation (47) and
εF is the Fermi energy. It is apparent that equation (49), which shows the deviation from the
Korringa law due to the virtual pair excitations, can fit the experimental data for cuprates,
where experiment for the inverse nuclear relaxation time shows the temperature dependence
T −1

1 ∼ aT + b with an almost temperature-independent termb [9, 31]. The comparison of
equation (49) with experiments for cuprates givesa ∝ χ̃2

s (0, 0) andb ∝ a(π/16)λ3
s εF .

4. Discussion

Now, as an example, we can estimate the interelectron interaction constants, such as〈D2〉,
〈Dc〉 and 〈D̃c〉, in a layered 2D system. Firstly, we evaluate〈D2〉 or 〈D2〉NF because
〈D〉 = 2e2F(α, ζ )/κpF can be evaluated in terms of equation (31). The angular average in
analogy to equation (30) leads to the expression

〈D2(p − p′)〉NF = 2α
e2

κpF

F̃ (α, ξ) (50a)

where

F̃ (α, ζ ) =
∫ 1

0

dx√
1 − x2

x coth(ζx) + α

[x2 + 2αx coth(ζx) + α2]3/2
(50b)

andα = e2/κvF is the interelectron interaction constant as before,NF = m∗/π is the 2D
density of states, andζ = 2pF c with interlayer spacingc. It is interesting to note that
F̃ (α, ζ ) behaves in the limiting cases as follows. In the case of a large interlayer spacing
ζ � 1 and weak interelectron coupling of high-density limit(α � 1), F̃ (α, ζ ) ≈ 1/α while,
in the case of strong coupling or low-density limit(α � 1), F̃ (α, ζ ) ≈ π/(2α2). The value
of F̃ (α, ζ ) weakly depends on the interlayer spacing whenc � a∗

B , and it decreases with
decrease inc whenc < a∗

B , namelyF̃ (α, ζ ) ≈ (π/2α2)(1 + a∗
B/2c)/(1 + a∗

B/c)3/2. This is
analogous to thec-dependence ofF(α, ζ ) from equation (31). In contrast with the behaviour
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of F̃ (α, ζ ) in the limiting cases, from equation (31),F(α, ζ ) ≈ ln(2/α) in the case of a
large interlayer separationζ � 1 and for weak couplingα � 1 while F(α, ζ ) ≈ π/(2α)

in the case of strong couplingα � 1. Now, using equation (50a), we can estimate the
value of λ2, defined asN2

F 〈D2〉, in a layered 2D system. In the case of weak coupling
α � 1, λ2 = N2

F 〈D2〉 = (2/π)α2F̃ (α, ζ ) ≈ (2/π)α � 1. This means that the contribution
of the virtual pair excitations to the response in the charge channel becomes less important
in the case of weak coupling or in the high-density limit(α � 1). However, in the
case of intermediate coupling(α ≈ 1) and for strong coupling(α � 1) it follows that
λ ≈ 1. Therefore, the contribution of the term∼ tanh(ω/2T ) in equation (27) should not
be ignored. This may explain why no marginal behaviour is observed in the conventional
superconductors while it is the preliminary characteristics in cuprates.

Secondly, we consider〈Dc〉, and〈D̃c〉 in a layered 2D system. First of all, we estimate
the condition of instability of the Fermi liquid with respect to the charge-density wave
instability, i.e. the condition of instability of the zero-sound mode [17, 25, 26] which is
determined by the conditionF s

0 (0) 6 −1. From equation (26), using equations (31) and
(50a), we have the critical temperature

Tcs ≈ 1.13εF exp

{
− 1

αF̃ (α, ζ )

(π

α
− F(α, ζ ) + αF̃ (α, ζ )

)}
(51)

at which the zero-sound mode becomes unstable. Equation (51) allows us to obtainTcs in the
limiting cases. For example, in the case of the high-density limit or weak coupling(α � 1)

and for a large interlayer spacing(ζ = 2pF c � 1), Tcs ∼ εF exp(−π/α) is very low. In
the low-density limit or for strong interelectron coupling(α � 1), Tcs ≈ 1.13εF exp(−2) ≈
0.153εF ≈ 0.48ns/m∗. These are in line with our previous estimates [22]. Equation (51)
determines a temperature region where correlations in the particle–hole channel become
significant. Further, in equation (34) or equation (36),Dc(k, ω) is the screened Coulomb
interaction given byDc(k, ω) = V (k)/ε(k, ω) = V (k)/[1−V (k)χ̃c(k, ω)], whereε(k, ω)

is the dielectric response function,V (k) is a bare Coulomb interaction (in the case of a
layered 2D system,V (k) is given by equation (29)), and̃χc(k, ω) is the irreducible charge-
density response function which, in the long-wavelength limit(k � 2pF ), is given by
equations (24) or (26). It is also understood that, with increase on the wavevector|k|,
the parameterF s

0 (ω) in equation (26) should decrease becauseD(k) in equation (24b)
decreases with increase ink whenk > 2pF . It is possible to approximate thek-dependence
of F s

0 (ω) in the Hubbard-like manner. This implies that in equation (50) for〈D2〉NF or

〈D〉 = 2e2F(α, ζ )/κpF we can replacepF in the denominator by
√

k2 + p2
F , wherek is in

the in-plane wavevector. It can be shown, using equations (26), (31) and (50), that in this
approximationF s

0 (k, ω) turns into the form

F s
0 (k, ω) ≈ − αP (ω, T )√

1 + k2/p2
F

(52)

whereP(ω, T ) = π−1[F(α, ζ )−αF̃ (α, ζ )+αF̃ (α, ζ ) ln(εF /x)] is a function of frequency,
temperature, interelectron interaction constantα and interlayer spacingc related toζ by ζ =
2pF c, andx = max{ω, T }. Equation (52), in fact, qualitatively describes thek-dependence
of F s

0 (k, ω), and actually does not affect the final results too much. Nevertheless, it is
convenient to introduce such ak-dependence. Thus, using equation (52) in equation (26),
and employing the angular average in analogy to equation (30),〈Dc(p − p′, 0)〉 can be
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derived as

〈Dc(p − p′, 0)〉 = 2e2

κpF

λ(α, ζ ) (53a)

where

λ(α, ζ ) =
∫ 1

min{1,(1/2) Re
√

P 2
0 α2−1}

8(x) dx −
∫ min{1,(1/2) Re

√
P 2

0 α2−1}
8(x) dx (53b)

P0 = P0(ω = 0, T ) and8(x) = {(1− x2)[x2 + α̃2 + 2α̃x coth(ζx)]}−1/2, with the effective
coupling parameter̃α = α/(1 − αP0/

√
1 + 4x2). It follows from equation (53b) that, in

the case of weak coupling or in the high-density limit(α � 1), λ(α, ζ ) = F(α, ζ ), and
equation (53a) exactly coincides with that in the RPA, i.e.〈Dc(p − p′, 0)〉 = 〈D(p − p′)〉
in this case. In the case of strong interelectron coupling or in the low-density limit
(α � 1), λ(α, ζ )(< 0) is negative and its absolute value may be large. It is seen from
equation (53b) that, for a large interlayer spacing,λ(α, ζ ) ≈ −1.33P0 ≈ −1.33(P0 ≈ 1 was
assumed) and|λ(α, ζ )| in this case also increases with decrease in temperature because of
the temperature dependence ofP0. It is interesting to note that in the case of strong coupling
the value of|λ(α, ζ )| depends on the interlayer spacingc, increases as it decreases, and
becomes large forc ≈ 1/pF . The negative value ofλ(α, ζ ) in the case of strong coupling
corresponds to the strong attraction due to the exchange–correlation effects in the electron–
hole channel. The fact that such an attraction (negative value ofλ(α, ζ )) leads to the
existence of the undamped zero-sound spin wave in the correlated Fermi liquid will be
discussed later.

Now let us evaluate〈D̃c〉 = 〈D̃c(p − p′, 0)〉. Using equation (22) in equation (39) and
taking into account equations (26) and (52),D̃c(k, ω) can be written as

D̃c(k, ω) = V (k)

1 − V (k)[1 − Gc(k, ω)]χ0(k, ω)
(54)

where Gc(k, ω) = V −1(k)[Ac − Bc(ω)] ≈ −V −1(k)N−1
F F s

0 (k, ω) = P(ω, T )GH(k) is
introduced as the local field factor in the charge channel.P(ω, T ) is defined in equation (52).

GH(k) = k/(2f (k)

√
k2 + p2

F ), [32] is the well-known Hubbard-like local field factor,
wheref (k) is the form factor of a layered 2D system given in equation (29). The angular
average in equation (54) for̃Dc(p−p′, 0), in analogy to equation (30), leads to the expression

〈D̃c(p − p′, 0)〉 = 2e2

κpF

µ(α, ζ ) (55a)

where

µ(α, ζ ) =
∫ 1

0

dx√
1 − x2

× 1√
x2(1 − αP0/

√
1 + 4x2)2 + 2αx(1 − αP0/

√
1 + 4x2) coth(ζx) + α2

(55b)

and P0 = P(ω = 0, T ) as before. From equation (55b) µ can be analytically calculated
in the limiting cases. For example, in the case of the high-density limit(α � 1) and
for a large interlayer spacingζ = 2pF c � 1, µ ≈ ln(2/α) and we have the RPA result
µ(α, ζ ) = F(α, ζ ). In fact, this region of the carrier density corresponds to a normal metal.
In the low-density limit(α � 1)), the value ofµ depends onP0; if P0 = 1, corresponding to
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the Hubbard approximation,µ ≈ 0.8π/α, whereas, in the RPA (which correspondsP0 = 0
in equation (55b)) µ = 0.5π/α. These conclusions confirm our earlier results shown in
[22] in a different way.

Now, using equations (50)–(55) we can evaluateAs andBs(ω) included in equation (45)
in the spin channel for a layered 2D system as follows:

AsNF = α

π

{
λ(α, π) + α

π
µ(α, ζ )[F(α, ζ ) − αF̃ (α, ζ )]

}
(56)

and

NF Bs(ω) = 2

π2
α3µ(α, ζ )F̃ (α, ζ )N−1

F

∑
q,|ξq |6εF

1 − 2nF (ξq)

ω − 2ξq + iδ
(57)

whereλ(α, ζ ), µ(α, ζ ), F(α, ζ ) and F̃ (α, ζ ) are given by equations (53b), (55b), (31) and
(50b), respectively. Furthermore, using equations (55) and (50), the interelectron coupling
constantλs in the spin channel, which was introduced in equations (49), can be expressed
by

λ3
s = 4

π2
α3µ(α, ζ )F̃ (α, ζ ) (58)

whereµ(α, ζ ) and F̃ (α, ζ ) are defined as before. It is concluded from equation (58) that,
in the weak-coupling limit(α � 1), λ3

s ≈ (4/π2)α2 ln(2/α) � 1 is very small, and the
contribution of the virtual pair excitations to the nuclear-spin relaxation time is negligible.
The Koringa law is well observed in this case. In the strong-coupling limit(α � 1), λ3

s ≈ 1
and the deviation from the Korringa law is appreciable.

In addition, it is worthwhile to point out that, in the strong-coupling limit(α � 1),
as seen from equations (56) and (57),NF As ≈ (α/π)λ(α, ζ ) ≈ −1.33αP0/π is negative,
which might be large and temperature dependent as well, whereasNF Bs(0) ≈ − 1

4 ln(εF /T )

in this case. This means that, in some temperature regions,|As | > |Bs(0)|; therefore
Fa

0 > 0 and the Landau Fermi-liquid parameter in the spin channel in equation (47) becomes
positive. MoreoverFa

0 (0) can even increase with decrease in temperature owing to the
temperature dependence ofP0 in λ(α, ζ ). Thus, the spin susceptibility in equation (47)
χ̃s(0, 0) ≈ −NF /[1 +Fa

0 (0)], in this case will decrease with decrease in temperature. Such
temperature behaviour of̃χs(0, 0) may have some relevance to the explanation of the spin-
pseudo-gap behaviour in the underdoped region(YBa2Cu3O7−x and La2−xSrxCuO4) for
cuprates [9, 33, 34] in the normal state. Furthermore, in this case, (Fa

0 (0) > 0), according to
the Landau Fermi-liquid theory; in the system there should exist a well defined undamped
spin zero-sound mode. The dispersion relation for the spin zero-sound mode can be found
from equation (45) forω > vF k. From equation (56) in the strong-coupling limit(α � 1)

and withχ0(k, ω) = NF [1/

√
(1 − v2

F k2/ω2)−1] in equation (45) (the free-particle response
function in the high-frequency limit,ω > vF k, for a 2D electron spectrum), the dispersion
relation for the spin zero-sound mode turns into the formωs = vsk, wherevs is the spin-wave
velocity and given by eithervs = √

Fa
0 /2vF ≈ √

(α|λ(α, ζ )|/2π)vF ≈ √
(0.67αP0/π)vF

for Fa
0 � 1, or vs ≈ vF for Fa

0 � 1. As seen, the velocityvs of the zero-sound mode
may depend on the interlayer spacingc becauseλ(α, ζ ) depends on it. The existence of
the spin zero-sound mode in the case of strong coupling (whereas there is no sound mode
in the charge channel in this case) seems to be in agreement with the Mermin [35] theorem
which asserts that at least one of the modes(m = 0), zero sound or spin zero sound, must
exist in the Fermi liquid at sufficiently low temperatures.
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5. Conclusions

In summary, it is shown here that the vertex corrections for both the charge and the spin
channels play an important role in the charge and spin responses of the Fermi liquid. It is
also shown that the virtual pair (Cooper pair-like) excitations can contribute to both charge
and spin responses of the Fermi liquid. This is in agreement with the MFL model proposed
by Varmaet al, to explain the universal anomalies in the normal state of cuprate high-Tc

superconductors. In this sense the theory given here seems to be its microscopic origin.
The major approximations to derive equations (26) and (27) for the charge response and

equations (47) and (48) for the spin response are based on several assumptions. First, it is
assumed that the interaction has momentum and frequency extents of the order of the Fermi
energy. Thus, as noted above, our consideration is suitable for non-retarded interactions
such as Coulomb type, and cannot be used for retarded interactions such as the electron–
phonon interaction whenωph � εF i.e. when the characteristic phonon frequency is much
less than the Fermi energy. In the latter case the vertex corrections are not important,
the Migdal [18] theorem applies and the adiabatic approximation is sufficient. Second, we
assumed thatNF , the density of states, is a constant up to the Fermi energy. This means
that our consideration is more suitable for the 2D energy spectrum whereNF = m∗/π .

The kernel of the two-particle interaction which appears in the equation for the three-
point vertex part is evaluated in the first step of perturbation beyond the RPA. It includes
three different contributions: the first-order screened exchange interaction, and two others
representing, the interaction in the particle–hole channel, namely the direct screened and the
Cooper-like second-order terms. The direct term corrects the first-order screened exchange,
whereas the Cooper-like term represents the states that appear on addition or removal of
two particles and has a logarithmic singularity with respect to the variablep′ + p as in
the Cooper issue. The existence of such terms in the lowest order of perturbation was
first indicated by Landau [37] in his theory of the Fermi liquid. The Cooper-like term is
different from the well known Cooper exchange graph due to the identical initial and final
momenta in scattering. This term appears in the perturbation series with a factor of 2 due
to the spin summation and with a negative sign with respect to the conventional Cooper
graph. We carried out the ladder summation of these three contributions to find the solution
of the integral equation for the three-point vertex part. It is shown that the Cooper-like
scattering produces the imaginary part of polarizability in the charge channel that contains
the anomalous Fermi-liquid term∼ − ω/T in addition to the normal Fermi-liquid response
∼ − ω/vF k. In other words the Cooper-like scattering induces the virtual pair excitations
in addition to the usual single-particle excitations. In the spin channel the first step of
perturbation leads to the first-order screened exchange interaction between particles only
and thereby reproduces the spin response which is in an agreement with Landau’s Fermi-
liquid theory.

In addition, we have shown that our results can satisfactorily describe the deviation from
the Korringa law that was observed in experimental studies of the nuclear-spin relaxation
time in cuprates. Moreover, our results show the existence of an undamped spin-wave
zero sound in the case of strong coupling. It seems that such a spin wave was observed
in the neutron scattering studies of superconducting copper oxides in the normal state
[36]. In addition, we have shown that the spin-psuedo-gap behaviour observed in the
underdoped cuprates can also be explained in the framework of the correlated Fermi-liquid
model. In this paper we do not make a detailed comparison of the present theory with the
available experimental data for cuprates. Instead, we basically rely on the qualitative analysis
performed by Varma and co-workers [10–12]. The detailed numerical calculations of both
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the normal and the superconduction-state properties such as the dynamical conductivity
σ(ω), etc, with the contribution of virtual pair excitations, which will make this paper too
lengthy, are being undertaken and will be published in the future. As an example, we may
evaluate the inverse quasi-particle lifetimeτ−1

e (ω) = −2 Im6(pF , ω) (where6(p, ω) is
the single-particle self-energy) in combination with the irreducible response function in the
charge channel given by equation (25). Our crude estimation ofτ−1

e (ω) shows the present
theory can satisfactorily describe, at least, the linear temperature dependence of resistivity
in a wide temperature region, which was observed in most of cuprates in the normal state.
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